FLUID SOLAR

4" high efficiency submersible solar pumps

(Maximum sand content 150 g/m³)

Domestic use

Agricultural use

PERFORMANCE RANGE

- Flow rate up to **180 l/min** (10.8 m³/h)
- Head up to 180 m

APPLICATION LIMITS

- Maximum liquid temperature +35 °C
- Maximum sand content 150 g/m³
- Maximum immersion depth of 40 m with a sufficiently long power cable

CONSTRUCTION AND SAFETY STANDARDS

EN 60034-1 EN 60335-1 IEC 60335-1 IEC 60034-1 **CEI 61-150 CEI 2-3**

EU REGULATION N. 547/2012

PATENTS - TRADE MARKS

Company with management system certified DNV

ISO 9001: QUALITY ISO 14001: ENVIRONMENT

CERTIFICATIONS

EHE

Registered Trade Mark n. 0001516301 FLUID SOLAR

Patent n. 0001413386, EP09781276.2

and the performance will be reduced.

Patent Pending n° PCT/IB2009/051491, PCT/IB2010/054499

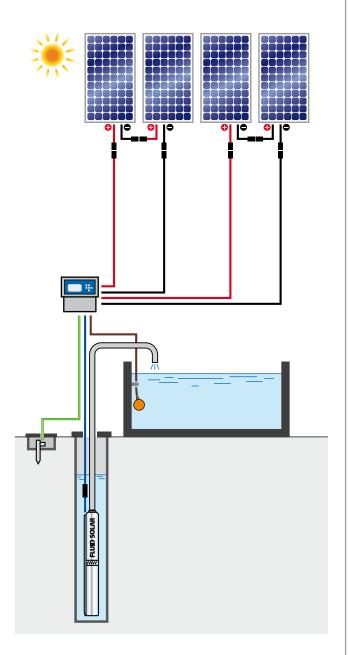
- **TECHNICAL CHARACTERISTICS** • 4" multi-stage submersible solar pumps
- High performance motor with permanent magnets

The FLUID SOLAR pumps have been developed to pump clean

water from a well utilising energy obtained from photovoltaic panels. The electronic control incorporated into the high performance motor converts the exit voltage from the panels and regulates the velocity of rotation of the motor in order to utilise

the available energy most efficiently at any one time: on a sunny day there will be a high velocity of rotation with a raised

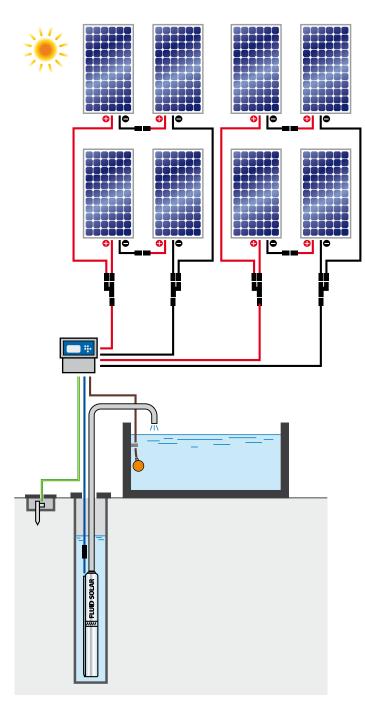
performance of the pump, and on a cloudy day the velocity


High efficiency photovoltaic panels PANASONIC mod. VBHN240SJ25

INSTALLATION AND USE

• Electronic control incorporated in the motor

FLUID SOLAR P1 = 750 W

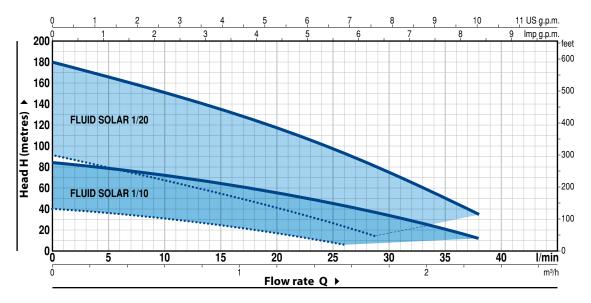


INSTALLATION REQUIREMENTS FOR PUMPS WITH $P_{1}=750 \text{ W}$

- In order to achieve its nominal performance the pump must be supplied by **4 photovoltaic panels**
- The available voltage of each panel must be in the range from 35 ÷ 50 Vpc
- The nominal total power of the 4 panels must be at least 980 Wp

STANDARD INSTALLATION FLUID SOLAR

P1 = **1500 W**


INSTALLATION REQUIREMENTS FOR PUMPS WITH P1=1500 W

- In order to achieve its nominal performance the pump must be supplied by 8 photovoltaic panels
- The available voltage of each panel must be in the range from 35 ÷ 50 Vpc
- The nominal total power of the 8 panels must be at least 1960 Wp

FLUID SOLAR

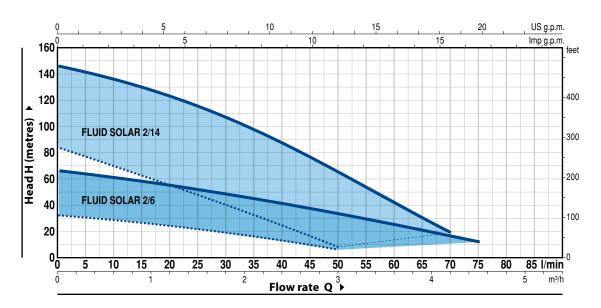
CHARACTERISTIC CURVES AND PERFORMANCE DATA

Tolerance of characteristic curves in compliance with EN ISO 9906 Grade 3B

FLUID SOLAR 1/10

ABSORBED POWER P1 750 W

Performance with <u>4 photovoltaic panels</u> with a total rated power of 980 Wp


Q m³/h l/min		0	0.3	0.6	1.2	1.6	1.8	2.3
		0	5	10	20	26	30	38
H metres		84	79	72	56	42	33	12
	••••	40	36	31	17	6		

FLUID SOLAR 1/20

ABSORBED POWER P1 1500 W

Performance with 8 photovoltaic panels with a total rated power of 1960 Wp

				-					
m³/h		0	0.3	0.6	1.2	1.6	1.74	1.8	2.3
I/min		0	5	10	20	26	29	30	38
H metres		180	165	150	118	92	79	75	35
	••••	90	80	67	41	22	13		

FLUID SOLAR 2/6

ABSORBED POWER P1 750 W

Performance with **4 photovoltaic panels** with a total rated power of 980 Wp

Performance with	4 pno	tovoit	аіс ра	neis w	ith a to	otai rat	ea pov	ver or s	380 W)
Q m³/h l/min	0	0.3	0.6	1.2	1.8	2.4	3.0	3.6	4.2	4.5
l/min	0	5	10	20	30	40	50	60	70	75
	66	64	61	55	48	41	33	25	16	12
H metres	32	31	28	24	19	13	6			

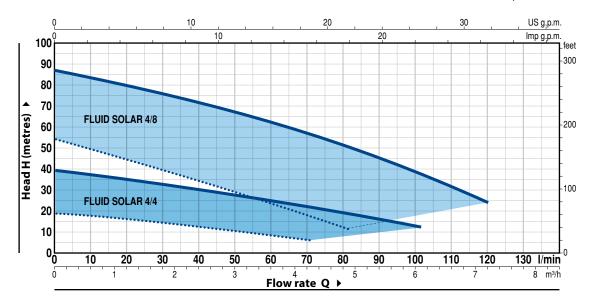
FLUID SOLAR 2/14

ABSORBED POWER P1 1500 W

Performance with **8 photovoltaic panels** with a total rated power of 1960 Wp

Q m³/h l/min	0	0.3	0.6	1.2	1.8	2.4	3.0	3.6	4.2
l/min	0	5	10	20	30	40	50	60	70
	146	140	136	123	107	87	65	42	20
H metres	82	77	70	55	40	24	8		

Performance with a solar radiation of 1000 W/m² and with an available voltage of the photovoltaic panels of 100 VDC


Performance with a solar radiation of 300 W/m² and with an available voltage of the photovoltaic panels of 70 VDC

The performance curves illustrated above are obtained with the photovoltaic panels facing SOUTH (facing NORTH for installations in the southern hemisphere) and optimising the angle of inclination in relation to the horizon in compliance with the latitude of the installation site

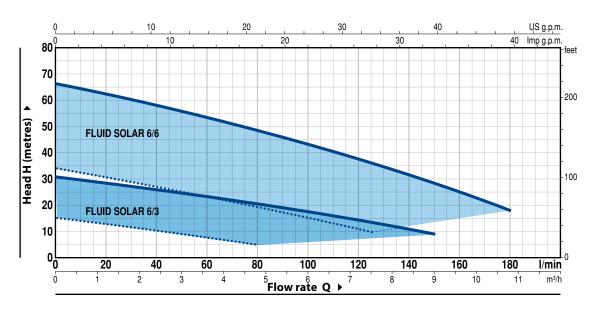
CHARACTERISTIC CURVES AND PERFORMANCE DATA

Tolerance of characteristic curves in compliance with EN ISO 9906 Grade 3B

FLUID SOLAR 4/4

ABSORBED POWER P1 750 W

Performance with <u>4 photovoltaic panels</u> with a total rated power of 980 Wp


m³/h		0	0.3	0.6	1.2	1.8	3.0	3.6	4.3	4.5	4.8	5.7	6.1
Q II/nin		0	5	10	20	30	50	60	71	75	80	95	102
	39	38.5	37	35	32.5	27	25	22	21	18	14	12	
H metres	••••	19	18.5	17.5	16	14	10	8	6				

FLUID SOLAR 4/8

ABSORBED POWER P1 1500 W

Performance with <u>8 photovoltaic panels</u> with a total rated power of 1960 Wp

Q m³/h I/min		0	0.3	0.6	1.2	2.4	3.6	4.9	6.0	7.2
l/min		0	5	10	20	40	60	82	100	120
		87	85	83	80	71	62	50	39	24
H metres	••••	54	52	49	45	34	23	11		

FLUID SOLAR 6/3

ABSORBED POWER P1 750 W

Performance with <u>4 photovoltaic panels</u> with a total rated power of 980 Wp

remonnanc	e with	T PIIOU	ovoitaic	paneis	withat	Otarrate	u powe	1 01 900	wp
o m³/h		0	0.3	1.8	3.6	4.8	5.4	7.2	9.0
l/min		0	5	30	60	80	90	120	150
		31	30	27	23	20	19	14	9
H metres	••••	15	14	11	8	5			

FLUID SOLAR 6/6

ABSORBED POWER P1 1500 W

Performance with <u>8 photovoltaic panels</u> with a total rated power of 1960 Wp

Q m³/h l/min		0	0.3	1.8	3.6	5.4	7.2	7.5	9.0	10.8
l/min		0	5	30	60	90	120	125	150	180
H metres		66	65	60	53	46	37	14	28	18
	••••	34	33	29	23	17	11	10		

Performance with a solar radiation of 1000 W/m² and with an available voltage of the photovoltaic panels of 100 VDC

•• Performance with a solar radiation of 300 W/m² and with an available voltage of the photovoltaic panels of 70 VDC

The performance curves illustrated above are obtained with the photovoltaic panels facing SOUTH (facing NORTH for installations in the southern hemisphere) and optimising the angle of inclination in relation to the horizon in compliance with the latitude of the installation site

FLUID SOLAR P1 = 750 W

POS. COMPONENT CONSTRUCTION CHARACTERISTICS **DELIVERY BODY AND** Acciaio inox AISI 304, provvista di bocca di man-**EXTERNAL SLEEVE** data filettata ISO 228/1. Lexan 141-R per FLUID SOLAR 1/10, 4/4, 6/3 **IMPELLERS** Delrin 100P per FLUID SOLAR 2/6 **DIFFUSERS** Noryl FE1520PW **STAGE BOXES /** Acciaio inox AISI 304 **STAGE LIDS** 5 **CABLE COVER** Acciaio inox AISI 304 Acciaio inox AISI 304 **PUMP SHAFT** per FLUID SOLAR 1/10, 4/4, 4/8, 6/3 Acciaio inox AISI 316L 7 **DRIVE COUPLING** per FLUID SOLAR 1/10, 4/4, 4/8, 6/3 8 **MOTOR SHAFT** Acciaio inox EN 10088-3 - 1.4104 **MOTOR SLEEVE** 9 Acciaio inox AISI 304

10 TWO MECHANICAL SEALS SEPARATED BY AN OIL CHAMBER

Tenuta	Albero Posizio			Materiali			
Tipo	Diametro		Anello fisso	Anello rotante	Elastomero		
STA-17	Ø 17 mm	Lato motore	Carburo di silicio	Grafite	NBR		
ST1-16	Ø 16 mm	Lato pompa	Carburo di silicio	Grafite	NBR		

11 BEARINGS 6203 2RS - C3E / 6203 ZZ - C3E

12 INVERTER

13 ELECTRIC MOTOR

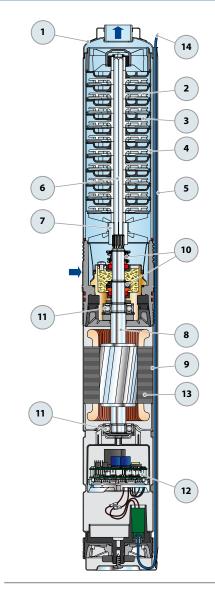
- Submersible PEDROLLO motor, suitable for continuous duty (with dry, rewindable stator).
- High performance motor with permanent magnets
- Insulation: class FProtection: IP X8

14 POWER CABLE

PBS-P type approved for use in drinking water by "ACS" in compliance with BS 6920, approval n. 04 ACCLI 201 Standard length 2 metres

Equipment supplied: connection kit for RPS2 cables

15 CONTROL BOX


16 CONNECTORS

- 2 SMK male connectors
- 2 SMK female connectors

DIMENSIONS AND WEIGHT

MODEL	PORT	N°	DIMENSI	kg *	
	DN	STAGES	Ø	h	
FLUID SOLAR 1/10		10		710	12.3
FLUID SOLAR 2/6	1"	6	100	587	11.4
FLUID SOLAR 4/4		4	100	614	11.0
FLUID SOLAR 6/3	11/4"	3		616	11.0

(* weight of the pump with control box)

FLUID SOLAR P1 = 1500 W

POS. COMPONENT CONSTRUCTION CHARACTERISTICS

1	DELIVERY BODY AND EXTERNAL SLEEVE	Acciaio inox AISI 304, provvista di bocca di mandata filettata ISO 228/1.
2	IMPELLERS	Lexan 141-R
3	DIFFUSERS	Noryl FE1520PW
4	STAGE BOXES / STAGE LIDS	Acciaio inox AISI 304
5	CABLE COVER	Acciaio inox AISI 304
6	PUMP SHAFT	Acciaio inox AISI 304
7	DRIVE COUPLING	Acciaio inox AISI 316L
8	MOTOR SHAFT	Acciaio inox EN 10088-3 – 1.4104
9	MOTOR SLEEVE	Acciaio inox AISI 304

10 TWO MECHANICAL SEALS SEPARATED BY AN OIL CHAMBER

	Tenuta	Albero	Posizione		Materiali	
	Tipo	Diametro		Anello fisso	Anello rotante	Elastomero
	STA-17	Ø 17 mm	Lato motore	Carburo di silicio	Grafite	NBR
	ST1-16	Ø 16 mm	Lato pompa	Carburo di silicio	Grafite	NBR
11	BEARINGS		3203 B 2RS	- C3E / 6203	ZZ - C3E	

12 INVERTER

13 ELECTRIC MOTOR

- Submersible PEDROLLO motor, suitable for continuous duty (with dry, rewindable stator).
- High performance motor with permanent magnets
- Insulation: class FProtection: IP X8

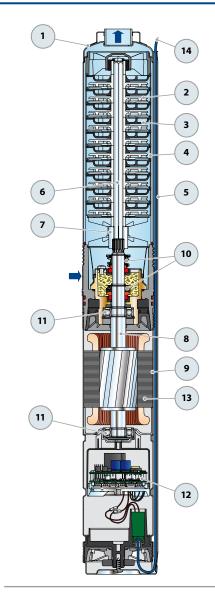
14 POWER CABLE

■ PBS-P type

approved for use in drinking water by "ACS" in compliance with BS 6920, approval n. 04 ACCLI 201 Standard length 2 metres

Equipment supplied: connection kit for RPS2 cables

15 CONTROL BOX


16 CONNECTORS

- 2 SMK male connectors
- 2 SMK female connectors
- N. 2 Y female/male-male connectors type MC4
- N. 2 Y male/female-female connectors type MC4

DIMENSIONS AND WEIGHT

MODEL	PORT	N°	DIMENSIONS mm		kg *
	DN	STAGES	Ø	h	
FLUID SOLAR 1/20		20		990	13.9
FLUID SOLAR 2/14	1″	14	100	855	13.8
FLUID SOLAR 4/8		8	100	772	13.7
FLUID SOLAR 6/6	11/4"	6		776	13.7

(* weight of the pump with control box)

